Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2017

Lecture 7:

Quiz Questions and More on Curve Fitting

31 January 2017 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

A Quiz Question from 2015

- The stated question:
 - 1.3 mg/mL protein solution
 - Molecular mass = 37,000 Da
 - $A_{280} = 0.93$ in a 1-cm cuvette

Calculate the molar extinction coefficient. Be sure to express your answer with the correct units.

- Some "hidden" questions:
 - · What is this question about?
 - · What will the answer look like?

Clicker Question #1

What are the correct units for the answer?

- 1 M
- 2 M·cm
- M^{-1} cm $^{-1}$
- $\mathbf{4} \ \mathsf{M} \cdot \mathsf{cm}^{-1}$

Another Part of the Quiz Question

The stated question:

It turns out that the sample you were given is contaminated with 0.01 mg/mL DNA. But, the original estimate of the protein concentration, 1.3 mg/mL is, in fact, correct.

Explain how the contaminating DNA will affect your estimate of the extinction coefficient.

What is this question about?

Clicker Question #2

How will the presence of contaminating DNA affect the estimated extinction coefficient of the protein?

- 1 Make the extinction coefficient too low.
- 2 Not affect the extinction coefficient.
- Make the extinction coefficient too high.

A Linear Least-squares Fit to Bradford Calibration Data

■ The estimated parameters for y = mx + b:

$$m = 0.052 \pm 0.006$$

 $b = 0.08 \pm 0.06$
 $R^2 = 0.93$

A 2nd-order Polynomial Least-squares Fit to Bradford Calibration Data

■ For 2nd-order polynomial fit:

$$\chi^2 = 0.012$$
 $R^2 = 0.988$

For linear fit:

$$\chi^2 = 0.062$$

 $R^2 = 0.93$

- Increasing the number of parameters almost always improves the fit!
- Is it justified here?

Does the Fit Function Make Sense Physically?

Should the absorbance decrease as the amount of BSA increases beyond 20 µg?

Probably not!

The function serves as a calibration curve over the range used to fit it, but not beyond.

A 4th-order Polynomial Least-squares Fit to Bradford Calibration Data

For 4th-order polynomial fit:

$$\chi^2 = 0.015$$
 $R^2 = 0.991$

■ For 2nd-order polynomial fit:

$$\chi^2 = 0.012$$
 $R^2 = 0.988$

For linear fit:

$$\chi^2 = 0.062$$

 $R^2 = 0.93$

Have we gone to far?

A 7th-order Polynomial Least-squares Fit to Bradford Calibration Data

For 7th-order polynomial fit:

$$\chi^2 = 0$$

$$R^{2} = 1$$

A perfect fit!

Or, perfectly absurd?

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk"

Fitting an Elephant

Mayer, J., Khairy, K. & Howard, J. (2010). Drawing an elephant with four complex parameters. *Am. J. Phys.*, 78, 648–649.

http://dx.doi.org/10.1119/1.3254017

Another Interesting Function

$$y = \frac{ax}{b+x}$$

■ When $x \ll b$

$$y = \frac{ax}{b+x} \approx \frac{ax}{b}$$

A line through the point (0,0), with slope a/b.

■ When $x \gg b$

$$y = \frac{ax}{b+x} \approx \frac{ax}{x} = a$$

A constant, a.

"Linear" versus "Non-linear" Curve Fitting

In the context of curve-fitting, a polynomial

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

is said to be a "linear" function in the sense that y is a linear function of each of the fit parameters, a_i (even if it isn't linear with respect to x).

- Equations of this type can be fit to data relatively easily using equations like those shown for the straight line fit.
- The equation for a rectangular hyperbola:

$$y = \frac{a \cdot x}{b + x}$$

is *not* linear with respect to the parameter b.

For non-linear equations, least-squares fitting usually must be done iteratively.

An Iterative Method to Minimize χ^2

- Make initial estimates of parameters a and b
- 2 Calculate χ^2
- $oxed{3}$ Change the parameters a little bit and recalculate χ^2
- If χ^2 decreases, change the parameters some more in the same direction, otherwise change the parameters in the opposite direction.
- **5** Repeat until χ^2 does not decrease further.

A Rectangular Hyperbola Fit to Bradford Calibration Data

For fit to rectangular hyperbola:

$$\chi^2 = 0.02$$
 $R^2 = 0.977$
With only two parameters!

■ For 2nd-order polynomial fit:

$$\chi^2 = 0.012$$
 $R^2 = 0.988$

For linear fit:

$$\chi^2 = 0.062$$

 $R^2 = 0.93$

Does the Fit Function Make Sense Physically?

- Does the extrapolation look plausible?
- Is the curvature real?
- How could we find out?
- Why might the Bradford calibration curve have this shape?

A Rectangular Hyperbola Fit to Bradford Calibration Data

Fit function:

$$y = \frac{ax}{b+x}$$

Fit parameters:

$$a = 2.32 \pm 0.53$$

 $b = 24.9 \pm 6.6$

- What are the units for the parameters?
- Why are the uncertainties so large, relative to the parameter values?

Why Are the Uncertainties So Large?

- To determine both *a* and *b*, we need data over a range that includes values that are less than *b* and values that are greater than *b*.
- Good data analysis requires good experimental design! (And, good data!)

■ When *x* is small relative to *b*:

$$y = \frac{ax}{b+x} \approx \frac{ax}{b}$$

A line through the point (0, 0), with slope a/b.

If we only have data in this region, the slope, a/b, is well defined, but lots of pairs of a and b will fit the data well.

■ When *x* is large relative to *b*

$$y = \frac{ax}{b+x} \approx \frac{ax}{x} = a$$

A constant, a.

If we only have data in this region, what will happen to our fit?